Data from an experiment may result in a graph indicating exponential growth. This implies the formula of this growth is \(y = k{x^n}\), where \(k\) and \(n\) are constants. Using logarithms, we can ...
SEPARATION OF CARTESIAN PRODUCTS OF GRAPHS INTO SEVERAL CONNECTED COMPONENTS BY THE REMOVAL OF EDGES
Let G = (V(G), E(G)) be a graph. A set S ⊆ E(G) is an edge k-cut in G if the graph G − S = (V(G), E(G) \ S) has at least k connected components. The generalized k-edge connectivity of a graph G, ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results